Structural relationship between link proteins and proteoglycan monomers

J.-P. Périn, F. Bonnet and P. Jollès*

Laboratoire des Protéines (Unité CNRS no. 1188 alliée à l'INSERM), Université de Paris V, 45 rue des Saints-Pères, F75270 Paris Cedex 06, France

Received 11 July 1986

Structural homologies between link proteins and proteoglycan monomers are demonstrated. A possible redundancy in the proteoglycan monomers structure is discussed and the link proteins domains homologous to other proteins are specified.

Link protein Proteoglycan monomer Structural homology

1. INTRODUCTION

In the cartilage matrix the proteoglycan monomers (PG) are built up of a central protein core along which various glycosidic side chains are covalently bound; they form stable aggregates by interaction with hyaluronic acid and link proteins (LP) [1]. Despite their heterogeneity, bovine nasal cartilage PG gave rise to cyanogen bromide fragments sufficiently homogeneous for primary structure studies [2,3]. One of them, termed CN-2, after reduction and alkylation gave rise to a fragment which presented an N-terminal amino acid sequence strikingly homologous with two LP peptides [4]; in addition, CN-2 contained mannoserich structures which could be involved in N-linked oligosaccharides [5].

These two observations prompted us to focus our structural studies on this particular CN-2 fragment. The recently reported sequence of LP revealed a tandemly repeated structure [6]: it was of interest to know whether in PG such a structure could be demonstrated in order to increase the structural relationship between PG and LP.

* To whom correspondence should be addressed

2. MATERIALS AND METHODS

Cyanogen bromide treatment of PG gave rise to three major fractions (CN-1, CN-2 and CN-3); after reduction and alkylation of CN-2, CN-2 RA/6 B1 was purified by Sepharose CL-6B chromatography [2]. Diphenylcarbamyl chloridetreated trypsin (EC 3.4.21.4) was from Sigma, Staphylococcus aureus V8 protease (EC 3.4.21.19) from Miles, and Sephadex G-10, G-25 and G-75 from Pharmacia. Reverse-phase HPLC was performed on an aquapore RP-300 column (Brownlee) in 0.1% trifluoroacetic acid (TFA) using a 0-40% acetonitrile gradient (Gilson chromatograph). Automated Edman degradation was carried out in a Beckman 890 C sequencer by the 0.1 M quadrol single cleavage method; the phenylthiohydantoin-amino acids were characterized as described in [7]. Dansylation was performed according to [8]. Enzymic digestions were performed in a 50 mM ammonium bicarbonate, 2 mM EDTA (pH 7.8) buffer at 37°C for 6 h at an enzyme/substrate ratio of 1:50.

3. RESULTS AND DISCUSSION

The tryptic and V8 protease digests of the CN-2

RA/6 B1 fraction were desalted by Sephadex G-10 filtration in 30% acetic acid. Preliminary separation of the peptides from both origins was achieved by Sephadex G-25 filtration in 30% acetic acid. The materials recovered in the excluded peaks were applied to Sephadex G-75 in 2 M CaCl₂; the

recovered fractions were then desalted on Sephadex G-10.

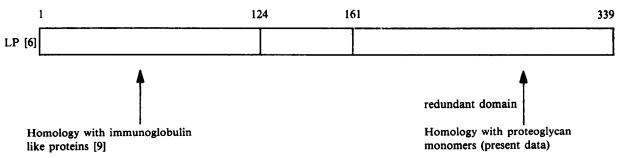
The peptides contained in the Sephadex G-25 or G-75 included fractions were isolated by reverse-phase HPLC. Several were quite pure and could be submitted to amino acid sequence analysis. Table

Table 1

Amino acid sequences of tryptic (T) and Staphylococcus aureus V8 protease (V)
peptides from CN-2 RA/6B 1

T1 FATR
T2 GLDK
T3 QACLR
T4 AAWS R
T5 YPISK
T6 LPGGVF
T7 HPRVGDK
T8 YPIVSPR
T9 TPCGVDK
TIO YSLTFEEAK
TII PACGGDKPGVR
T12 ARPNCGGNLLGVR
T13 TPCGVDKDS SPGVR
T14 T V Y L HAXQT G Y P D P S S R
TI5 T V Y L Y P X Q T G L L D P L S R
T16 YPI VTPRPACGGDKPGVR
T17 T GAI I AS PEQL QAAYEAGYEQC DAG WL Q D
VI AQEFCE
V2 AGYEQCD
V3 VFFATRLE
V4 VYCYVDRLE
V5 TYDVYCYVDRLE
V6 AICYTGEDFVDIPE
V7 TYDVYCYVDRLEGE
V8 AKQACLRTGAIIASPE
V9 AGYEQCDAGWLQDQT
V10 S QAAT FPT VGQLYAAWS RGLDKCYAG WLADG

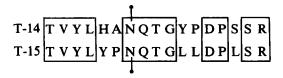
For peptides T17, V9 and V10, only the N-terminal sequences are indicated


Table 2

Sequence homologies between link proteins (LP) [6] and some tryptic (T) and Staphylococcus aureus V8 protease (V) peptides from proteoglycan monomers (fraction CN-2 RA/6 BI): the latter quoted here present at least 46% identical amino acids situated in homologous positions in one or the other tandemly repeated LP sequence

Topografia to softenio
LP: 155 160 200 200 210 220 YNLNFHEARQACLDQDAVIASFDQLYDAW-R-GGLDWCNAGWLSDGSVQYPITKPREPCGGQNTV-PGVR TKLTYDEAVQACLNDGAQIAKVGQIFAAW-KLLGYDRCDAGWLADGSVRYPISRPWRRC-SPTEAAVR 255 260 370 310
<pre>CN-2 RA/6 Bl peptides (present study): Y S L T F E E A K</pre> (TO)
SSAGWLADRSVRYPISKARPNXGG
TGAIIASPEQLQAAYEAGYEQCDAGWLQD
YPIVTPRPACGGDKPGVR SOAATLATTGOTVAAWSRGINKGVAGWIADG
(VIO)
TPCVGDKDSSPGVR

1 presents the sequences determined so far; the peptides are listed as a function of their size: some of them are redundant. Table 2 is an attempt at alignment of some tryptic and staphylococcal peptides (table 1) from CN-2 RA/6 B1 with the tandemly repeated sequence in LP. It is obvious that CN-2 RA/6 B1 presents high homology with this LP region and its different tryptic and S. aureus V8 protease peptides have an average of about 50% identical amino acids encountered in homologous positions in one or the other tandemly repeated LP sequence (44% identical residues between the two compared LP sequences). In ad-


Our results did not rule out the existence of different PG populations. Nevertheless the existence of a structural homology between LP and PG might reflect the involvement of these structures in a particular biological function: we suggest that they might be involved in their hyaluronic acid-binding capacity. Previously we noted that the N-terminal sequence of LP presents homologies with immunoglobulin-like proteins [9]: the present study extends our knowledge concerning the domains organization of LP as their C-terminal redundant part is homologous to proteoglycan monomers (scheme 1).

Scheme 1. Structural homologies of link proteins (LP) with other proteins.

dition a redundancy in CN-2 RA/6 B1 can be postulated: the latter might explain the slight heterogeneity observed at positions 6, 7 and 9 of peptide V-10. The previously determined N-terminal sequence of CN-2 RA/6 B1 [3] has been lengthened and is included in this table (N-t).

No amino acid could be characterized at step 7 in peptides T-14 and T-15; glucosamine was the only amino sugar characterized in both of them. These peptides were submitted to six Edman degradation cycles and the resulting products were dansylated. Dansyl-aspartic acid was then characterized at position 7 in peptides T-14 and T-15 indicating that N-glycosylation occurred at an identical position in both, the classical Asn-X-Thr code sequence being implicated. The two peptides are homologous: they could not be aligned with the LP sequence [6].

ACKNOWLEDGEMENTS

The authors thank Dr Jacqueline Jollès for helpful discussions and Miss M. Rougeot (IN-SERM) and Mr Ly Quan Le (CNRS) for skilful technical assistance.

REFERENCES

- [1] Hascall, V.C. (1977) J. Supramol. Struct. 7, 101-120.
- [2] Bonnet, F., Le Glédic, S., Périn, J.-P., Jollès, J. and Jollès, P. (1983) Biochim. Biophys. Acta 743, 82-90.
- [3] Périn, J.P., Bonnet, F., Jollès, J. and Jollès, P. (1984) FEBS Lett. 176, 37-42.
- [4] Neame, P.J., Périn, J.-P., Bonnet, F., Christner, J.E., Jollès, P. and Baker, J.R. (1985) J. Biol. Chem. 260, 12402-12404.
- [5] Nilsson, B., De Luca, S., Lohmander, S. and Hascall, V.C. (1982) J. Biol. Chem. 257, 10920-10927.
- [6] Neame, P.J., Christner, J.E. and Baker, J.R. (1986)J. Biol. Chem. 261, 3519-3535.

- [7] Schoentgen, F., Metz-Boutigue, M.-H., Jollès, J., Constans, J. and Jollès, P. (1985) Biochim. Biophys. Acta 871, 189-198.
- [8] Woods, K.R. and Wang, K.T. (1967) Biochim. Biophys. Acta 133, 369-370.
- [9] Bonnet, F., Périn, J.P., Lorenzo, F., Jollès, J. and Jollès, P. (1986) Biochim. Biophys. Acta, in press.